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Introduction
Walking disabilities are a common consequence of neu-

rological conditions such as stroke and spinal cord injury.
Body weight supported treadmill training (BWSTT) is suc-
cessfully applied to the rehabilitation of patients suffering
from these conditions [1, 2].

Robotic rehabilition devices such as the Lokomat (Ho-
coma AG, Switzerland) [3], the ReoAmbulator (Motorika,
USA), and the Gait Trainer (Reha-Stim, Germany) auto-
mate BWSTT by moving patients repetitively along pre-
defined walking trajectories. However, neuroscience re-
search [4] implicates that movements have to be trained
not only with a large number of repetitions but also with a
certain amount of variance to optimize retraining of motor
abilities. Therefore, patient-cooperative control strategies
[5], which increases variance in the spatial pattern of move-
ment, are being developed for these devices. In these co-
operative approaches, the robots need to behave in a com-
pliant way to allow patients to influence their movements.
However, patients also require support during certain gait
phases to walk successfully.

We propose an adaptive algorithm based on iterative learn-
ing control that adjusts the support to the amount needed
to maintain walking, but keeps the patient constantly chal-
lenged to participate as much as possible in the training.
We will demonstrate the use of the algorithm in two dif-
ferent applications for the rehabilitation robot LOKOMAT:
first, to shape an assistive force field applied at the knee
joint to assist weight bearing during stance phase, and sec-
ond, to automatically adjust the amount of body weight
support provided to the patient.

Methods
Gait rehabiliation robot: The rehabilitation robot LOKO-

MAT automates body weight supported treadmill training of
patients with locomotor dysfunctions in the lower extrem-
ities such as spinal cord injury and hemiplegia after stroke
[3]. It comprises two actuated leg orthoses that are attached
to the patient’s legs. Each orthosis has one drive in the hip
joint and one drive in the knee joint to induce flexion and
extension movements of hip and knee. A closed-loop con-
trolled body weight support (BWS) system relieves patients
from a definable amount of their body weight via a harness
which is attached to the patient’s trunk (Fig. 1).

Iterative Learning Support: An adaptation algorithm based
on iterative learning control (ILC) [6] is used to adjust the

Figure 1: The rehabilitation robot LOKOMAT (photo cour-
tesy of Hocoma AG)

amount of support provided to the patient. The basic idea
of ILC is the iterative improvement of an input function for
a cyclic process. The input function for the (k +1)th cycle
u(k+1)(t) is determined by adding a correction term to the
input function of the kth cycle

u(k+1)(t) = u(k)(t)+Γ(t)e(k)(t) (1)

where e(k)(t) represents the control error during the kth cy-
cle, and Γ(t) is the “learning gain" of the process.

Emken et al. [7] showed that an adaptive controller which
is supposed to assist only as much as needed must incor-
porate a forgetting factor in order to keep patients contin-
uously challenged. Introducing such a factor kf ∈ [0,1] in
eq. (1) yields

u(k+1)(t) = (1− kf)u(k)(t)+Γ(t)e(k)(t). (2)

Adaptive stance support: When the compliance of the
LOKOMAT is increased to let patients move more freely,
many patients are not capable of keeping their knee joints
extended. Therefore, we applied additional supportive torques
during stance phase to prevent knee buckling. For this par-
ticular case, the control error e(k)(t) during the kth cycle is
a scalar function of the control deviation in the knee joint
during stance phase. Based on this error, a scalar support-
ive torque for the knee joint is calculated.

τ
(k+1)
sup (t) = (1− kf)τ

(k)
sup(t)+ kle(k)(t) (3)

This supportive torque is added to the output of the closed-
loop impedance controller [5] as a feed forward term.

Automatisierungstechnische Verfahren für die Medizin 2009

1



Adaptive BWS: Assistive knee torques are well suited for
smaller amounts of support up to 20 Nm. If more support
is needed, the links between exoskeleton leg and patient
leg are not sufficiently rigid to transfer the forces. In such
cases, the body weight support via the harness at the pa-
tient’s trunk can assist more effectively. We applied an it-
erative learning law analog to eq. (3) to adjust the level of
body weight support during LOKOMAT training. The er-
ror function e(k)(t) was defined such that the subject in the
LOKOMAT would reach a defined level of physical activity.

Results

Adaptive stance support: The adaptive stance support re-
duced unwanted knee flexion during stance phase when
subjects (healthy, n = 3) walked passively. The amount
of support was adjusted according to the individual needs
of the subjects. The BWS system was used to simulate a
subject-dependent need for more or less support (Fig. 2).
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Figure 2: Adaptive stance support for a test subject dur-
ing walking with different levels of BWS. The graph shows
the average knee support during stance phase for each step.
The subject was active during the first 50 steps, passive dur-
ing the next 50 steps, and active again during the last 50
steps.

Adaptive BWS: The iterative learning algorithm for adapt-
ing the body weight support successfully tracked desired
levels of physical activity in healthy test subjects (Fig. 3).

Conclusion

Cooperative control approaches for gait rehabilitation that
rely on increased compliance can be improved by adding
supportive forces/torques. Furthermore, the level of activ-
ity of a patient during gait training is strongly influenced
by the amount of body weight support. Iterative learning
control algorithms are well suited to adapt these means of
support to the individual capabilities of a patient. Thus,
patients can be trained at a constantly challenging level.
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Figure 3: Desired physical activity tracked by iterative
learning algorithm for adaptive body weight support in an
experiment with a healthy test subject
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