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Introduction
Robot-assisted gait rehabilitation is becoming more and

more common in patients with neurological impairments.
Active patient participation in cognitively challenging train-
ing sessions are considered essential for the success of gait
rehabilitation [2], although objective assessments of cogni-
tive load are difficult to obtain during training. Question-
naires can be used to assess cognitive load, but only at dis-
crete time points, often after training has ceased. Psycho-
physiological measurements have previously been used to
infer to the psychological state of subjects, as every change
in the psychological state has a physiological response [1].
Our objective was to determine if measurable physiolog-
ical responses could be used to provide a continuous es-
timate of a subject’s cognitive load during robot-assisted
gait training. We provided subjects with a virtual task dur-
ing robot-assisted gait therapy to induce different levels of
cognitive load. Physiological measurements in combina-
tion with machine learning techniques were used to objec-
tively quantify the current cognitive load of the subject per-
forming the task in the virtual environment.

Methods
Hardware and sensors

The experimental setup consisted of three parts: a com-
mercial gait robot commonly used in gait rehabilitation, the
virtual reality display system and the measurement system
for physiological signals (Fig. 1). The driven gait orthosis
(DGO) (Lokomat - Hocoma Inc., www.hocoma.com) was
used for the locomotion training. We recorded heart rate,
breathing frequency, skin conductance and skin tempera-
ture from subjects walking in the Lokomat. From these
signals, we extracted heart rate variability (time and fre-
quency domain), skin conductance responses, the deriva-
tive of the skin resistance, and the derivative of skin tem-
perature. The signals were amplified with the g.USBamp
of Guger Technologies, Graz, Austria (www.gtec.at). Sig-
nals were sampled at 512 Hz according to the recommenda-
tions of Malik [3]. All signal processing software was writ-
ten in Matlab 2008b (The Mathworks, Natick, MA, USA,
www.mathworks.com).

Virtual task

A virtual reality task with adjustable difficulty level was
used to modulate cognitive load and effort during training

sessions. In the virtual task, subjects had to collect and
avoid objects which were placed on a straight line and dis-
appeared slowly in front of them. The walking speed in
the scenario was controlled via subject’s voluntary effort
in the DGO. An increase/decrease in effort lead to an in-
crease/decrease in virtual walking speed. In addition to the
objects, subjects had to answer questions during the task,
which were displayed in a box on the screen. If the state-
ment was correct (e.g. 1+1=2), subjects had to collect the
box before it disappeared. If the statement was false (e.g.
1+1=3) subjects had to avoid it by decreasing the walking
speed until the box disappeared.

Three different levels of cognitive load were induced by
adjusting the difficulty of the task such that the subjects
could reach a desired task success. Difficulty was modu-
lated by question difficulty and distance between objects.
In the under-challenging condition, task was adjusted such
that the subjects succeeded in over 90% of cases. The ques-
tions were very simple, the objects were placed far away
and disappeared slowly such that subjects had a long time
to think about the answer. In the challenging condition,
question difficulty and the required reaction time were ad-
justed so that the success rate was between 40-70%. In the
over-challenging condition, subjects had very little time to
answer very difficult questions with an average success rate
of maximal 20%.

Experimental setup

We performed experiments in eight healthy subjects (29y
± 6, 5f and 3m, 172cm± 8). All subjects gave informed
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Fig. 1: Experimental setup
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consent. Subjects were fixed into the DGO with a harness
around the hip and cuffs around the legs and walked 2km/h.
For safety reasons, all subjects were connected to a body
weight support system.

Cognitive load (question difficulty) and physical effort
(required walking speed in the VR) were co-varied in our
main protocol. Developing an algorithm that estimated only
cognitive load required us to also collect data in which
these two variables were uncorrelated. This was done by
initiating each experimental session with a 6 minute walk-
ing period in which physical effort was varied, but no cog-
nitive task was present. During this initial period, subjects
completed three different walking behaviors: a) passive,
such that the robot provided most of the physical effort,
b) in their normal gait pattern, and c) active, thereby over-
emphasizing the gait pattern and expending additional en-
ergy. This initial period was followed by 5 minutes of
exercise time, during which subjects could get acquainted
with the addition of the virtual task. Meanwhile, the ex-
perimenter determined the levels of cognitive load by ad-
justing the distance between objects and the question diffi-
culty level such that the task success for each condition was
reached as described above. Then, the three different cog-
nitive load conditions were presented in randomized order,
each 2.5 minutes long.

After each condition of physical and cognitive load, sub-
jects answered questionnaires rate their perceived level of
physical and cognitive effort. We used a five-point scale
with 1 being the easiest and 5 the most difficult.

Automatic classification of cognitive load

We extracted features from the physiological data as de-
scribed above, downsampled the data to 1Hz and trained
a linear discriminant analysis (LDA) classifier [4]. In ad-
dition to the 9 signals extracted from physiological record-
ings as described above, we also used forces from the DGO
and task success data from the virtual task as input to the
classifier

We investigated how well the classifier could generalize
across subjects by training the classifier on all but the i-
th subject and performing classification on the i-th subject,
commonly also called "leave one out" classification. All
data recorded in the ’no task’ condition, regardless of the
level of physical effort, was labeled as baseline to the clas-
sifier. This ensured that the classifier estimated only cog-
nitive load and not physical effort. To quantify our results,
we computedR2, the coefficient of determination between
the estimated and the actual cognitive load.

Results and Discussion
We successfully performed automatic classification of the

cognitive load of subjects during virtual reality augmented
robot-assisted gait training. We found that the physical ef-
fort induced by walking should explicitly be taken into ac-
count during classifier training. The most important phys-
iological markers for cognitive load were (in descending
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Fig. 2: Mean and std values from questionnaires

order): changes in skin temperature, heart rate variability
(time and frequency domain), galvanic skin response and
breathing frequency.

Perceived physical effort increased with increasing walk-
ing activity during the "no task"condition. Same was true
for increasing difficulty level of the virtual task. However,
perceived cognitive difficulty level increased twice as much
during the virtual task conditions compared to the "no task"
condition (Fig. 2). We therefore consider cognitive load to
be dissociated from physical effort in our task.

The LDA algorithm was able to distinguish three differ-
ent levels of cognitive load and the baseline. The cross
validation achieved in average anR2 value of 0.82± 0.07
(Tab. 2). TheR2 classification dropped to an average of
0.7 when the LDA was trained on a baseline with only one
level of physical activity.

Tab. 1: Results of the cross-validation classification.
Values indicate, whatR2 we could reach for correct
classificatioon of the three conditions of cognitive load

Subject 1 2 3 4 5 6 7 8
R2 0.95 0.85 0.86 0.91 0.88 0.92 0.96 0.93

Our real-time capable approach of automatic classifica-
tion of cognitive load is the first step towards auto-adaptive,
bio-cooperative rehabilitation robots. In the future, we will
close the control loop and perform automated control of
cognitive load during gait rehabilitation.
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