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Introduction

Various actuated transfemoral prostheses have been de-
veloped to restore walking after above-knee amputation.
Big challenges when developing actuated prostheses are
the user interface and the control of the device. Most ap-
proaches adjust the behavior of the prosthesis depending
on the estimated gait phase. However, it has been shown
in a clinical study with the commercial C-Leg prosthesis,
which also uses gait-phase dependent control, that highly
active patients feel controlled by the behavior of their pros-
thesis [1]. Our recently developed approach calledCom-
plementary Limb Motion Estimationdoes not try to esti-
mate gait phases, but instantaneously generates the motion
of the missing limb based on residual body motion. The
aim is to allow a more direct control by the user. In a pilot
study, an above-knee amputee was able to walk on a tread-
mill, as well as to ascend and descend stairs [2]. The knee
joint was position-controlled, with the reference knee posi-
tion continuously generated by a linear combination of hip-
and knee angles and angular velocities of the healthy leg,
thereby creating a virtual coupling between the healthy leg
and the prosthesis. The coupling parameters were obtained
by statistical regression on data of healthy subjects.

A major disadvantage of stiff position control of a trans-
femoral prosthesis is that interaction with the environment
is ignored; when the prosthesis hits the ground, the knee
joint does not absorb the impact, in contrast to what mus-
cles around a physiological human knee do. A force or
impedance control scheme could resolve this issue. While
still using residual body motion to control the prosthesis
with such a scheme, two problems need to be solved: iden-
tifying the appropriate force or impedance parameters, and
finding suitable signals in residual body motion to predict
those parameters. The second question can be tackled in
parallel to the first, because muscle activity indirectly en-
codes impedance [3] and can be used as a preliminary out-
put of the prediction. In this paper, we investigate which
kinematic variables of the residual body could serve as pre-
dictors for such a control scheme. This is done by looking
at data from healthy subjects, where kinematic variables are
considered as predictors (inputs), and EMG of a thigh mus-
cle is considered as the output (Figure 1). The statistical
method we use selects the inputs which are most important
to predict the output [4].

Materials and Methods
From measurements of five subjects (two female, three

male) obtained in a standard gait lab (optical tracking sys-
tem, EMG, ground reaction forces), we select five full gait
cycles (from right heel strike to right heel strike) where all
optical markers are available during the full cycle. Due to
its important contribution to the knee torque during gait,
EMG of the right vastus medialis is considered the repre-
sentative output to be estimated, and 16 marker positions
on the residual body (i.e. excluding the right leg) are taken
as candidate predictors (Figure 1). For the sake of com-
pleteness, markers from the arms are also considered, even
though it would be very undesirable for an amputee to de-
pend on the arm movement for control of the prosthesis.
Each marker provides three Cartesian world coordinates,
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Figure 1: Regression scheme and input/output signals.

which yields 48 input signals in total. These coordinates
are transformed into a body coordinate system by subtract-
ing the signals from the marker positioned at the sacrum.
The coordinates of the sacrum remain in world coordinates.
In order to reduce inter-subject variability, the signals are
normalized for each subject by subtracting the mean value
and dividing by the standard deviation of the respective sig-
nal. The raw EMG signal (sampled at 2 kHz after apply-
ing an analog anti-aliasing filter) is digitally filtered with a
third-order Butterworth bandpass between 10 Hz and 500
Hz, and it is full-wave rectified. It is divided by the mean
EMG valueEMG over all five gait cycles of the respec-
tive subject. This normalization method has been shown to
reduce inter-subject variability [5].

In order to determine which input signals are the best pre-
dictors for the output signal, an iterative algorithm is used
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Figure 2: Correlation coefficient (R2) for a given number
of predictors, averaged over 5 gait cycles.

which computes the unique contribution from each input to
the output, and the input with the smallest contribution is
eliminated at each iteration. This yields a ranking of each
signal, with the most important signal remaining until the
last iteration. The algorithm is described in detail by West-
wick et al. [4]. We run the algorithm on a leave-one-out
basis, obtaining five combinations: In each combination,
one of the subjects serves as validation subject, and the
data from the other four subjects is used to compute the
best predictors. We refer to one such set as avalidation set.

Once the input signals are sorted according to the rank-
ing, we successively apply the regression to the remaining
subject for validation, with subgroups of 1-48 input signals.

Results
Reconstruction accuracy obtained from cross-validation

(in terms ofR2) already reaches a local maximum for three
predictors (Figure 2). The ranking of the most important
predictors differs for the different validation sets (Table 1).
The reconstructed EMG signal qualitatively matches the
measured signal using only three predictors (Figure 3).

Table 1: Best predictors for different selection data sets
(detailed marker positions see Figure 1).
Rank Set 1 Set 2 Set 3 Set 4 Set 5
1 tibia1y metata.2y metata.2y calcaneusy femur1y

2 tibia2z tibia1z tibia2z sacrumz femur1z

3 tibia1x calcaneusz shoulderlx tibia1x metata.2y
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Figure 3: Measured (true) and predicted (est.) EMG signal
for subject 2, which had the lowestR2 value when using 3
predictors. Mean and std. dev. of 5 gait cycles are shown.

Discussion
Even though the most important predictors found for each

validation set differ, the reconstruction accuracy is similar
and a qualitatively good estimate of the output signal can
be achieved with very few inputs. This indicates that the
best predictors in different sets are highly correlated and
equally suited for all five subjects.

We currently filter the EMGs only mildly (bandpass be-
tween 10 Hz and 500 Hz); while filtering with a moving
average of 100 ms greatly increases the value ofR2, it
does not influence the estimated output considerably. How-
ever, we noticed that normalization of input signals and
output signal had a strong impact on the resulting estimate.
We normalize the signals from the validation subjects with
their own mean and standard deviation; when these predic-
tors are later to be used to control a prosthesis, these two
parameters have to be adjusted for each predictor.

Conclusion
In this paper, we show that the EMG signal of the vastus

medialis muscle can be qualitatively reconstructed by using
as few as three predictors from a pool of kinematic input
signals. The results suggest that a similar reconstruction
accuracy can be achieved for a range of different inputs.
Should that prove to be true in future work, selection of
inputs could be continued based on more practical factors,
for example the reliability of real sensors for the specific
kinematic signals.
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