
10. Workshop 
Automatisierungstechnische 
Verfahren für die Medizin vom 
29. bis 30. März 2012 in Aachen 
 

„Variable Pass Length ILC in FES-based Drop Foot 
Rehabilitation“ 

 

Thomas Seel, Thomas Schauer, Jörg Raisch 
Fachgebiet Regelungssysteme, Technische Universität Berlin, Berlin, Deutschland 
E-Mail: seel@control.tu-berlin.de 
 
Jörg Raisch 
Max-Planck-Institut für Dynamik komplexer technischer Systeme, Magdeburg, Deutschland 
 
 
 
 
 
 
 
 
 

 

 

Copyright: VDI Verlag GmbH 
Band: Fortschritt-Bericht VDI Reihe 17 Nr. 286 „Automatisierungstechnische 

Verfahren für die Medizin“ 
Editors: Prof. Dr.-Ing. Dr. med. Steffen Leonhardt, Prof. Dr.-Ing. Dirk Abel, Prof. Dr.-

Ing. Klaus Radermacher, Christian Brendle, Henry Arenbeck, Kurt Gerlach-
Hahn, Kirsa Dannenberg 

ISBN: 978-3-18-328617-1 
Pages: 11-12 
 



Variable Pass Length ILC in FES-based Drop Foot Rehabilitation
Thomas Seel1, Thomas Schauer1 und Jörg Raisch1,2

1Control Systems Group, Technische Universität Berlin, Germany.
2Systems and Control Theory Group, MPI for Dynamics of Complex Technical Systems, Magdeburg, Germany.
Contact: seel@control.tu-berlin.de

Introduction
Iterative learning control (ILC) is based on the notion that

the performance of a system that executes the same task
multiple times can be improved by learning from previous
executions (trials, iterations, passes) [1]. Since rehabilita-
tion typically includes numerous iterations of predefined
movements, both robotic and FES-based assistance sys-
tems have been equipped with ILC algorithms in the past,
see e.g. [2–4]. However, unlike robotic applications, most
biomedical engineering systems do not meet the assump-
tions that ILC theory requires to hold. In many cases, the
system dynamics and the disturbances vary from pass to
pass. Input signals, such as electrical stimulation intensity,
are subject to saturation. And often the time length of the
iterations, known as pass length, is not constant. Therefore,
ILC theory needs to be extended to allow for proper con-
troller design and convergence proofs.
In this contribution we outline a new ILC theory exten-
sion for variable pass length systems. Subsequently, we
explain how the aforementioned challenge of variable pass
length arises in the stimulation control problem of a drop
foot neuroprosthesis. And finally, we demonstrate how the
recent results on variable pass length learning can be used
to design an iterative learning controller that accomplishes
monotonic convergence in a novel error concept.

ILC for Variable Pass Length Systems
Consider a discrete-time linear single-input single-output

process with relative degree m that is repeated over a num-
ber of trials indicated by the index j. Unlike traditional
ILC, we allow the length n j of the trials to vary arbitrarily
within certain bounds: n j ∈ [n,n]∀ j. For the jth trial we
define the following lifted signal vectors (i.e. vectors of a
finite number of sequent sample values):

u j = [u j(1−m),u j(2−m), . . . ,u j(n−m)]T ∈ Rn,

ŷ j = [y j(1),y j(2), . . . ,y j(n j)]
T ∈ Rn j ,

v = [v(1),v(2), . . . ,v(n)]T ∈ Rn.

Here u j and ŷ j are the system’s input and output signals,
respectively, and v is an unknown, but iteration-invariant,
disturbance signal. Then the system dynamics are given by

ŷ j = [Pu j + v]n j , (1)

where P ∈ Rn×n is the lifted system matrix of the process
(for a short example, please see Appendix A of [5]) and [·]n j

extracts the first n j entries of a vector. Furthermore, define

the tracking error ê j = [yd ]n j − ŷ j as the deviation from a
desired output yd ∈ Rn. In traditional ILC the control task
is to successively, i.e. from pass to pass, reduce that error
(in some norm) to a small number. However, both the val-
ues and the norm of ê j strongly depend on the current pass
length n j and thus the classic notions of both stability and
monotonic convergence loose their practical meaning in the
case of variable pass length processes. Instead, we define
e j as the error that would be observed if n j was equal to n,
i.e. the maximum pass length (MPL) error, and find that

e j = yd − (Pu j + v) . (2)

Apparently, the MPL error e j is only a theoretical concept
and not a measurable signal. In practice, the j-th pass ac-
tually terminates after n j samples. Thus, only the first n j
samples of e j can be measured and used for learning. A
fairly general input update law is

u j+1 = u j + LHn j e j , (3)

where the last (n−n j) samples of e j are set to zero by the
block-diagonal matrix Hn j = blockdiag{In j ,0n−n j}, with In j

and 0n−n j being identity and zero matrices, respectively.

Although e j is only accessible in simulation, its conver-
gence properties well describe whether the controller per-
formance actually improves from trial to trial. Therefore,
the concept of the MPL error is crucial for convergence
analysis. In a recent publication we presented first criteria
for monotonic convergence in variable pass length systems
[5]. The following was found to be the most practical cri-
terion for controller design:

Theorem 1 Consider system (2) with arbitrary pass lengths
n j ∈ [n,n]∀ j and disturbance v. Apply control law (3), then
||e j||1 decreases monotonically, if and only if

γ := ||In−PL||1 ≤ 1 (4)

For the proof, the interested reader is referred to [5].

ILC for FES in drop foot correction
Stroke patients who suffer from the drop foot syndrome

can be supported, for example, by controlling the ankle
joint angle during the swing phase of gait via electrical
stimulation of the peroneal nerve or the tibialis anterior
muscle. Due to the repetitive nature of gait, ILC seems to
be a promising tool for this application. But in human gait
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Figure 1: Foot movement with optimal (black foot lines)
and insufficient (grey foot lines) stimulation profile: If the
stimulation intensity is too low at the end of swing phase,
then the foot touches ground early.

the duration of swing phase, i.e. the pass length in the ILC
setting, varies with walking speed. One possible approach
is to rescale the input, reference and output signals in time-
direction, but in practice the length of a step is usually not
known until shortly before the heel strike. If we consider
humans walking at constant speed, e.g. on a treadmill, then
the pass length is almost constant and ILC has been suc-
cessfully applied to that case [2]. However, it was found
that a stroke patient’s steps are often cut short by putting
the foot down when balance or strength is lost. Assum-
ing that up to this point the movement was hardly differ-
ent from the movement in a full-length step, we should use
the data gathered in these aborted steps for learning. Even
more important, if the initial stimulation profile is insuffi-
cient, then the toes touch ground early, as depicted in Fig-
ure 1. In that case we must use the data from the unfinished
trial for learning since otherwise the next step will be the
same. Typically, these issues are either ignored completely,
or a heuristic approach is used hoping for convergence to be
maintained. But using the outlined recent results it is possi-
ble to design controllers and guarantee monotonic conver-
gence of the maximum pass length error for such variable
pass length systems.

Simulation Results

A linear model of the electrical stimulation dynamics in a
drop foot neuroprosthesis sampled at 50Hz is employed,
cf. [2]. Therein, the stimulation intensity and the ankle
joint angle are the input variable and the output variable,
respectively. The lifted system matrix P is calculated and a
two-parameter learning gain matrix L is designed by min-
imizing γ from equation (4), resulting in γ ≈ 0.4. We as-
sume the ankle trajectory, i.e. the thin line in Figure 1, to
be iteration-invariant in order to calculate, for each instant
in time, the ankle joint angle that corresponds to the toes
touching ground. Apparently, this is only an approxima-
tion, since the ankle trajectory as well as the voluntary mus-
cle activation vary slightly from pass to pass. To account
for such iteration variance we add a random low-frequency
disturbance to the output. The resulting closed loop system
is simulated for ten passes. Whenever the output falls be-
low the ground-touch line, the trial is terminated. Results
are presented in Figure 2. The controller performance im-
proves from trial to trial despite the foot touching ground
early on the first trials. As the angle trajectory converges
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Figure 2: Simulation results for variable pass length learn-
ing of a drop foot neuroprosthesis: Angle trajectories of ten
passes, reference trajectory (circles), and ground-touch line
(dashed). The controller learns from unfinished trials and
as the foot movement gets better, the steps get longer.

to the reference, the foot touches ground later, and the pass
length increases. Since the distance between reference tra-
jectory and ground-touch line decreases near n, the trial-to-
trial increase in n j decreases as well. From a large number
of simulation runs it was found that the pass length reaches
its upper bound n in about ten to twelve trials.

Conclusions
The use of ILC in biomedical engineering applications

calls for ILC theory extensions. A first step was taken
by developing a mathematical framework for variable pass
length ILC and applying the results to the control of a drop
foot neuroprosthesis. Herein, trials were terminated based
on output constraint violations. Simulation results revealed
that the controller learns from unfinished trials, and that
the pass length approaches its maximum value within a few
trials. Experimental validation and implementation in FES-
based assistance systems will follow. Also, practical solu-
tions for varying walking speed need to be found and the
issue of input saturation needs to addressed.
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